Advertisements
Advertisements
Question
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
Solution
3A – 2X = X – 2B
–2x – X = –2B – 3A
–3x = –2B – 3A
3X = 3A + 2B
`X = A + 2/3B`
= `[(1, 1),(-2, 0)] + 2/3[(2, -1),(1, 1)]`
= `[(1, 1),(-2, 0)] + [((2 xx 2)/3, -2/3),(2/3, 2/3)]`
= `[(1, 1),(-2, 0)] + [(4/3, (-2)/3),(2/3, 2/3)]`
= `[(1 + 4/3, 1 - 2/3),(-2 + 2/3, 0 + 2/3)]`
= `[(7/3, 1/3),((-4)/3, 2/3)]`
APPEARS IN
RELATED QUESTIONS
Find x, y if `[(-2,0),(3,1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
Given `A = [(-1, 0),(2, -4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A + X = B
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`; find the values of x, y and z.
If I is the unit matrix of order 2 × 2; find the matrix M, such that `M - 2I = 3[(-1, 0),(4, 1)]`
Find the matrix A, if `B = [(2, 1),(0, 1)]` and `B^2 = B + 1/2 A`.
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that A(B + C) = AB + AC.
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
If `[x, y][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]` find x and y if `x, y ∈ Z` (integer)
Determine the matrices A and B when A + 2B = `[(1, 2),(6, -3)] and 2"A" - "B" = [(2, -1),(2, -1)]`
If A = `[(1, 0),(1, 1)]`, B = `[(0, 1),(1, 0)]` and C = `[(1, 1),(0, 0)]`, the matrix A2 + 2B – 3C is ______.