Advertisements
Advertisements
प्रश्न
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
उत्तर
3A – 2X = X – 2B
–2x – X = –2B – 3A
–3x = –2B – 3A
3X = 3A + 2B
`X = A + 2/3B`
= `[(1, 1),(-2, 0)] + 2/3[(2, -1),(1, 1)]`
= `[(1, 1),(-2, 0)] + [((2 xx 2)/3, -2/3),(2/3, 2/3)]`
= `[(1, 1),(-2, 0)] + [(4/3, (-2)/3),(2/3, 2/3)]`
= `[(1 + 4/3, 1 - 2/3),(-2 + 2/3, 0 + 2/3)]`
= `[(7/3, 1/3),((-4)/3, 2/3)]`
APPEARS IN
संबंधित प्रश्न
Given `A = [(-1, 0),(2,-4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A – X = B
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
X + 2A = B
Evaluate if possible `[(1, -2)][(-2, 3),(-1, 4)]`
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find IB
Given A = `[(3, 0),(0, 4)]`, B = `[(a, b),(0, c)]` and that AB = A + B; find the values of a, b and c.
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1),(1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal A + CB
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find a matrix C such that C + B = `[(0, 0),(0, 0)]`
Solve the matrix equation `[(2, 1),(5, 0)] -3"X" = [(-7, 4),(2, 6)]`
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M.
Find X and Y If X + Y = `[(7, 0),(2, 5)]` and X – Y = `[(3, 0),(0, 3)]`