Advertisements
Advertisements
प्रश्न
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M.
उत्तर
`[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`
`2M = 3[(3, 2),(-2, 3)] - [(1, 4),(-2, 3)]`
= `[(9, 6),(0, -9)] - [(1, 4),(-2, 3)]`
= `[(9 - 1, 6 - 4),(0 - (-2), -9 - 3)]`
= `[(8, 2),(2, -12)]`
∴ `M = (1)/(2)[(8, 2),(2, -12)]` ...(Dividing by 2)
= `[(4, 1),(1, -6)]`
APPEARS IN
संबंधित प्रश्न
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find 2A – 3B + C
Given `A = [(2,1),(3,0)]`, `B = [(1,1),(5,2)]` and `C = [(-3-1),(0 0)]` Find A + 2C - B
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`; find the values of x, y and z.
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2A + 3At
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find IB
If A = `[(2, 0),(-3, 1)]` and B = `[(0, 1),(-2, 3)]` find 2A – 3B
If A = `[(0, -1),(1, 2)]` and B = `[(1, 2),(-1, 1)]` Find the matrix X if : 3A + X = B
Find X if Y = `[(3, 2),(1, 4)]` and 2X + Y = `[(1, 0),(-3, 2)]`
If A = `[(7, 5),(-3, 3)]` and B = `[(-2, 5),(1, 0)]`, then the matrix P (such that A + P = B) is ______.