Advertisements
Advertisements
प्रश्न
Given A = `[(2, -6),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(4, 0),(0, 2)]`. Find the matrix X such that A + 2X = 2B + C.
उत्तर
A = `[(2, -6),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(4, 0),(0, 2)]`
Let X = `[(x , y),(z, t)]`
A + 2X = 2B + C
2X = 2B + C – A
`2[(x, y),(z, t)] = 2[(-3, 2),(4, 0)] + [(4, 0),(0, 2)] - [(2, -6),(2, 0)]`
= `[(-6, 4),(8, 0)] + [(4, 0),(0, 2)] - [(2, -6),(2, 0)]`
= `[(-6 + 4 - 2, 4 + 0 + 6),(8 + 0 - 2, 0 + 2 - 0)]`
= `[(-4 , 10),(6, 2)]`
∴ `2[(x, y),(z, t)] = [(-4, 10),(6, 2)]`
∴ `[(x, y),(z, t)] = (1)/(2)[(-4, 10),(6, 2)]`
= `[(-2, 5),(3, 1)]`
संबंधित प्रश्न
Given `A = [(-1, 0),(2, -4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
X – B = A
If `[(4, -2),(4, 0)] + 3A = [(-2, -2),(1, -3)]`; find A.
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2A + 3At
If A = `[(2, x),(0, 1)]` and B = `[(4, 36),(0, 1)]`; find the value of x, given that A2 = B.
Given A = `[(3, 0),(0, 4)]`, B = `[(a, b),(0, c)]` and that AB = A + B; find the values of a, b and c.
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find A + 2C – B
If P = `|(14 , 17),(13,1)|` and Q = `|(2 , 1),(3 , -3)|` , find matrix M such that P - M = 3Q
Find matrices X and Y, if
X + Y = `[(5, 2),(0, 9)]` and X - Y = `[(3 , 6),(0, -1)]`
The additive inverse of matrix A + B, where A = `[(4, 2),(7, -2)]` and B = `[(-2, 1),(3, -4)]` is ______.