Advertisements
Advertisements
प्रश्न
If A = `[(2, x),(0, 1)]` and B = `[(4, 36),(0, 1)]`; find the value of x, given that A2 = B.
उत्तर
A2 = `[(2, x),(0, 1)][(2,x),(0, 1)]`
= `[(2 xx 2 + x xx 0, 2 xx x + x xx 1),(0 xx 2 + 1 xx 0, 0 xx x + 1 xx 1)]`
= `[(4 + 0, 2x + x),(0 + 0, 0 + 1)]`
= `[(4, 3x),(0, 1)]`
Given A2 = B
`[(4, 3x),(0, 1)] = [(4, 36),(0, 1)]`
Comparing the two matrices, we get
3x = 36
`=>` x = `36/3` = 12
APPEARS IN
संबंधित प्रश्न
Find x, y if `[(-2,0),(3,1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
Evaluate:
`6[(3),(-2)] -2[(-8),(1)]`
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
Evaluate if possible `[(6, 4),(3, -1)][(-1, 3)]`
Given A = `[(4, 1),(2,3)]` and B = `[(1, 0),(-2, 1)]`, find A – B
If A = `|(15,7),(13,8)|` and B = `|(16,12),(27,11)|`, find matrix X such that 2A - X = B.
If X = `|(1 , -2),(1 , 3)|` , Y = `|(-3 , 0),(4 , 1)|` and Z = `|(5 , -1),(3 , 2)|` , prove that X (Y + Z) = XY + XZ
If `2[(3, 4),(5, x)] + [(1, y),(0, 1)] = [(7, 0),(10, 5)]` Find the values of x and y
If A = `[(5, -5),(3, -3)]` and B = `[(-5, 5),(-3, 3)]`; the value of matrix (A – B) is ______.
If A = `[(1, 0),(1, 1)]`, B = `[(0, 1),(1, 0)]` and C = `[(1, 1),(0, 0)]`, the matrix A2 + 2B – 3C is ______.