Advertisements
Advertisements
प्रश्न
If A = `[(2, x),(0, 1)]` and B = `[(4, 36),(0, 1)]`; find the value of x, given that A2 = B.
उत्तर
A2 = `[(2, x),(0, 1)][(2,x),(0, 1)]`
= `[(2 xx 2 + x xx 0, 2 xx x + x xx 1),(0 xx 2 + 1 xx 0, 0 xx x + 1 xx 1)]`
= `[(4 + 0, 2x + x),(0 + 0, 0 + 1)]`
= `[(4, 3x),(0, 1)]`
Given A2 = B
`[(4, 3x),(0, 1)] = [(4, 36),(0, 1)]`
Comparing the two matrices, we get
3x = 36
`=>` x = `36/3` = 12
APPEARS IN
संबंधित प्रश्न
Evaluate:
`6[(3),(-2)] -2[(-8),(1)]`
Given `A = [(1 4),(2 3)] and B = [(-4 -1),(-3 -2)]` Find the matrix C such that C + B = `[(0, 0),(0,0)]`
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`; find the values of x, y and z.
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2At – 3A
Evaluate if possible `[(3, 2)][(2),(0)]`
If A = `[(1, 4), (1, -3)]` and B = `[(1, 2),(-1, -1)]`, find:
- (A + B)2
- A2 + B2
- Is (A + B)2 = A2 + B2 ?
Given `A = [(2, 1),(3, 0)], B = [(1, 1),(5, 2)]` and `C = [(-3, -1),(0, 0)]`; find A + 2C – B
Find matrices X and Y, if
X + Y = `[(5, 2),(0, 9)]` and X - Y = `[(3 , 6),(0, -1)]`
Solve the matrix equation `[(2, 1),(5, 0)] -3"X" = [(-7, 4),(2, 6)]`
If A = `[(1, 0),(1, 1)]`, B = `[(0, 1),(1, 0)]` and C = `[(1, 1),(0, 0)]`, the matrix A2 + 2B – 3C is ______.