हिंदी

In the given case below, find: the order of matrix M. the matrix M. M×[1102]=[12] [1421]×M=[135] - Mathematics

Advertisements
Advertisements

प्रश्न

In the given case below, find:

  1. the order of matrix M.
  2. the matrix M.
  1. `M xx [(1, 1),(0, 2)] = [(1, 2)]`
  2. `[(1, 4),(2, 1)] xx M = [(13), (5)]`
योग

उत्तर

We know, the product of two matrices is defined only when the number of columns of first matrix is equal to the number of rows of the second matrix.

i. Let the order of matrix M be a × b.

`M_(a xx b) xx [(1, 1),(0, 2)]_(2 xx 2) = [(1, 2)]_(1 xx 2)`

Clearly, the order of matrix M is 1 × 2.

Let `M = [(a, b)]`

`M xx [(1, 1),(0, 2)] = [(1, 2)]`

`[(a, b)] xx [(1, 1),(0, 2)] = [(1, 2)]`

`[(a + 0, a + 2b)] = [(1, 2)]`

Comparing the corresponding elements, we get,

a = 1 and a + 2b = 2

`=>` 2b = 2 – 1 = 1

`=> b = 1/2`

∴ `M = [(a, b)] = [(1, 1/2)]`

ii. Let the order of matrix M be a × b.

`[(1, 4),(2, 1)]_(2 xx 2) xx M_(a xx b) = [(13),(5)]_(2 xx 1)`

Clearly, the order of matrix M is 2 × 1.

Let `M = [(a), (b)]`

`[(1, 4),(2, 1)] xx M = [(13),(5)]`

`[(1, 4),(2, 1)] xx [(a),(b)] = [(13),(5)]`

`[(a + 4b),(2a + b)] = [(13),(5)]`

Comparing the corresponding elements, we get,

a + 4b = 13  ...(1)

2a + b = 5   ...(2)

Multiplying (2) by 4, we get,

8a + 4b = 20  ...(3)

Subtracting (1) from (3), we get,

7a = 7

`=>` a = 1

From (2), we get,

b = 5 – 2a

= 5 – 2

= 3

∴ `M = [(a),(b)] = [(1),(3)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Matrices - Exercise 9 (C) [पृष्ठ १३०]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 9 Matrices
Exercise 9 (C) | Q 17.2 | पृष्ठ १३०

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×