Advertisements
Advertisements
प्रश्न
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
उत्तर
Given
`[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
⇒ `[(2x + 2y, -y),(4x, -x + y)] = [(3),(2)]`
⇒ `[(2x, + y),(3x, + y)] = [(3),(2)]`
Comparing the corresponding elements
2x + y = 3 ...(i)
3x + y = 2 ...(ii)
Subtracting, we get
–x = 1
⇒ x = –1
Substituting the value of x in (i)
2(–1) + y = 3
⇒ –2 + y = 3
⇒ y = 3 + 2 = 5
Hence x = –1, y = 5.
APPEARS IN
संबंधित प्रश्न
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find AB,
Construct a 2 x 2 matrix whose elements aij are given by
aij = 2i - j
If A = `[(1, 2),(2, 3)] and "B" = [(2, 1),(3, 2)], "C" = [(1, 3),(3, 1)]` find the matrix C(B – A)
If `[(1, 2),(3, 3)] [(x, 0),(0, y)] = [(x, 0),(9, 0)]`find the values of x and y
If A = `[(2, x),(0, 1)] and "B" = [(4, 36),(0, 1)]`,find the value of x, given that A2 – B
If A = `[(3, x),(0, 1)] and "B" = [(9, 16),(0, -y)]`find x and y when A2 = B
If A = `[(2, 3),(1, 2)]` find x and y so that A² – xA + yI
If P = `[(2, 6),(3, 9)]` and Q = `[(3, x),(y, 2)]`, find x and y such that PQ = null matrix.