Advertisements
Advertisements
प्रश्न
Find x and y if `[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`
उत्तर
`[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`
⇒ `[(2x xx 3 + x xx 2),(y xx 3 + 3y xx 2)] = [(16),(9)]`
⇒ `[(6x + 2x),(3y + 6y)] = [(16),(9)]`
⇒ `[(8x),(9y)] = [(16),(9)]`
Comparing, we get
8x = 16
⇒ x = `(16)/(8)` = 2
and
9y = 9
⇒ y = `(9)/(9)` = 1
Here x = 2, y = 1.
APPEARS IN
संबंधित प्रश्न
If M = `[(1, 2),(2, 1)]` and I is a unit matrix of the same order as that of M; show that: M2 = 2M + 3I.
Solve for x and y:
`[(2, 5),(5, 2)][(x),(y)] = [(-7),(14)]`
Evaluate without using tables:
`[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
Find the 2 x 2 matrix X which satisfies the equation.
`[(3, 7),(2, 4)][(0 , 2),(5 , 3)] + 2"X" = [(1 , -5),(-4 , 6)]`
If A = `[(1, 2),(2, 3)] and "B" = [(2, 1),(3, 2)], "C" = [(1, 3),(3, 1)]` find the matrix C(B – A)
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
If A = `[(1, 0),(0, -1)]`, find A2 and A3.Also state that which of these is equal to A
If `[(1, 2),(3, 3)] [(x, 0),(0, y)] = [(x, 0),(9, 0)]`find the values of x and y
Solve the matrix equation : `[(4),(1)],"X" = [(-4, 8),(-1, 2)]`