Advertisements
Advertisements
प्रश्न
Evaluate without using tables:
`[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
उत्तर
We know that,
cos 60° = `1/2`, sin 30° = `1/2`, tan 45° = 1, cos 0° = 1
tan 45° = 1, cosec 30° = 2, sec 60° = 2, sin 90° = 1
Now `[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
= `[(2 xx 1/2, -2 xx 1/2),(-1, 1)][(1, 2),(2,1)]`
= `[(1, -1),(-1, 1)][(1, 2),(2, 1)]`
= `[(1 xx 1 + (-1) xx 2, 1 xx 2 + (-1) xx 1),(-1 xx 1 + 1 xx 2, -1 xx 2 + 1 xx 1)]`
= `[(1 - 2, 2 - 1),(-1 + 2, -2 + 1)]`
= `[(-1, 1),(1, -1)]`
APPEARS IN
संबंधित प्रश्न
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find AB.
If M = `[(4,1),(-1,2)]`, show that 6M – M2 = 9I; where I is a 2 × 2 unit matrix.
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the matrix X.
If A = `[(3 , 1),(-1 , 2)]` and B =`[(7),(0)]`, find matrix C if AC = B.
Evaluate : `[(4sin30°, 2cos60°),(sin90°, 2cos0°)] [(4, 5),(5, 4)]`
If A = `[(1, 2),(2, 3)] and "B" = [(2, 1),(3, 2)], "C" = [(1, 3),(3, 1)]` find the matrix C(B – A)
If `[(1, 3),(0, 0)] [(2),(-1)] = [(x),(0)]` Find the value of x
Find x and y if `[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`
If A = `[(3, x),(0, 1)] and "B" = [(9, 16),(0, -y)]`find x and y when A2 = B
If A = `[(1, 4),(0, -1)], "B" = [(2, x),(0, -1/2)]`find the value of x if AB = BA