Advertisements
Advertisements
प्रश्न
If M = `[(4,1),(-1,2)]`, show that 6M – M2 = 9I; where I is a 2 × 2 unit matrix.
उत्तर
M2 = `[(4, 1),(-1, 2)][(4, 1),(-1, 2)]`
= `[(4 xx 4 + 1 xx (-1), 4 xx 1 + 1 xx 2),(-1 xx 4 + 2 xx (-1), -1 xx 1 + 2 xx 2)]`
= `[(16 - 1,4 + 2),(-4 - 2, -1 + 4)]`
= `[(15, 6),(-6, 3)]`
6M – M2 = `6[(4, 1),(-1, 2)] - [(15, 6),(-6, 3)]`
= `[(24, 6),(-6,12)] - [(15,6),(-6,3)]`
= `[(24 - 15, 6 - 6),(-6 - (-6), 12 - 3)]`
= `[(9, 0),(0, 9)]`
= `9[(1, 0),(0, 1)]`
= 9I
Hence proved.
APPEARS IN
संबंधित प्रश्न
If M = `[(1, 2),(2, 1)]` and I is a unit matrix of the same order as that of M; show that: M2 = 2M + 3I.
In the given case below find
a) The order of matrix M.
b) The matrix M
`M xx [(1,1),(0, 2)] = [1, 2]`
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find BA.
Construct a 2 x 2 matrix whose elements aij are given by
aij = 2i - j
If A = `[(1, 2),(2, 1)] and "B" = [(2, 1),(1, 2)]`, fin A(BA)
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
Find the matrix X of order 2 × 2 which satisfies the equation `[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`
If A = `[(2, x),(0, 1)] and "B" = [(4, 36),(0, 1)]`,find the value of x, given that A2 – B
If A = `[(2, 3),(1, 2)]` find x and y so that A² – xA + yI
If matrix A = `[(2, 2),(0, 2)]` and A2 = `[(4, x),(0, 4)]`, then the value of x is ______.