Advertisements
Advertisements
प्रश्न
If A = `[(2, x),(0, 1)] and "B" = [(4, 36),(0, 1)]`,find the value of x, given that A2 – B
उत्तर
Given
A2 = `[(2, x),(0, 1)][(2, x),(0, 1)]`
A2 = `[(2, x),(0, 1)][(2, x),(0, 1)]`
= `[(4 + 0, 2x + x),(0 + 0, 0 + 1)]`
= `[(4, 3x),(0, 1)]`
∵ A2 = B
∴ `[(4, 3x),(0, 1)] = [(4, 36),(0, 1)]`
Corresponding the corresponding elements
3x = 36
⇒ x = 12
Hence x = 12.
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible A2
If A = `[(a, 0),(0, 2)]`, B = `[(0, -b),(1, 0)]`, M = `[(1, -1),(1, 1)]` and BA = M2, find the values of a and b.
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the order of the matrix X.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find BA.
If X = `[(4, 1),(-1, 2)]`,show that 6X – X² = 9I Where I is the unit matrix.
Choose the correct answer from the given four options :
A = `[(1, 0),(0, 1)]` then A2 =
Choose the correct answer from the given four options :
If A = `[(0, 1),(1, 0)]`, then A2 =
Choose the correct answer from the given four options :
If A = `[(1, 0),(1, 1)]`, then A2 =