Advertisements
Advertisements
प्रश्न
If X = `[(4, 1),(-1, 2)]`,show that 6X – X² = 9I Where I is the unit matrix.
उत्तर
X = `[(4, 1),(-1, 2)]`
x2 = x × x = `[(4, 1),(-1, 2)][(4, 1),(-1, 2)]`
= `[(16 - 1, 4 + 2),(-4 -2 , -1 + 4)]`
= `[(15, 6),(-6, 3)]`
L.H.S. 6X – x2 = `6[(4, 1),(-1, 2)] - [(15, 6),(-6, 3)]`
= `[(24, 6),(-6, 12)] - [(15, 6),(-6, 3)]`
= `[(24 - 15, 6 - 6),(-6 - 6, 12 - 3)]`
= `[(9, 0),(0, 9)]`
= `9[(1, 0),(0, 1)]`
= 91
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
if `A = [(3,5),(4,-2)] and B = [(2),(4)]`is the product AB possible? Give a reason. If yes, find AB
In the given case below, find:
- the order of matrix M.
- the matrix M.
- `M xx [(1, 1),(0, 2)] = [(1, 2)]`
- `[(1, 4),(2, 1)] xx M = [(13), (5)]`
`If A = [(1, -2 ,1), (2,1,3)] and B= [(2,1),(3,2),(1,1)]`;
Write down the product matrix AB.
If A = `[(3 , 1),(-1 , 2)]` and B =`[(7),(0)]`, find matrix C if AC = B.
If A = `[(2, 5),(1, 3)] "B" = [(1, -1),(-3, 2)]` , find AB and BA, Is AB = BA ?
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
If A = `[(1, 1),(x, x)]`,find the value of x, so that A2 – 0
Choose the correct answer from the given four options :
If A = `[(2, -2),(-2, 2)]`, then A2 = pA, then the value of p is
If A = `[(3, 2),(0, 5)] and "B" = [(1, 0),(1, 2)]` find the each of the following and state it they are equal: (A + B)(A – B)
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(2, 4)]`, C = `[(4, 1),(1, 5)]` and I = `[(1, 0),(0, 1)]`. Find A(B + C) – 14I.