Advertisements
Advertisements
प्रश्न
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(2, 4)]`, C = `[(4, 1),(1, 5)]` and I = `[(1, 0),(0, 1)]`. Find A(B + C) – 14I.
उत्तर
Given A = `[(1, 3),(2, 4)]`,
B = `[(1, 2),(2, 4)]`,
C = `[(4, 1),(1, 5)]`
and I = `[(1, 0),(0, 1)]`
Then B + C = `[(1, 2),(2, 4)] + [(4, 1),(1, 5)]`
= `[(5, 3),(3, 9)]`
and A(B + C) = `[(1, 3),(2, 4)][(5, 3),(3, 9)]`
= `[(5 + 9, 3 + 27),(10 + 12, 6 + 36)]`
= `[(14, 30),(22, 42)]`
Now A(B + C) – 14I = `[(14, 30),(22, 42)] - [(14, 0),(0, 14)]`
= `[(14 - 14, 30 - 0),(22 - 0, 42 - 14)]`
= `[(0, 30),(22, 28)]`
APPEARS IN
संबंधित प्रश्न
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible BA
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find AB.
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
Evaluate without using tables:
`[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find BA.
A = `[(1, 2),(3, 4)] and "B" = [(6, 1),(1, 1)], "C" = [(-2, -3),(0, 1)]` find each of the following and state if they are equal. A + CB
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
Find the matrix X of order 2 × 2 which satisfies the equation `[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`
If A = `[(3, x),(0, 1)] and "B" = [(9, 16),(0, -y)]`find x and y when A2 = B