Advertisements
Advertisements
प्रश्न
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
उत्तर
`[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
`[(x xx 1 + 0 xx 0, x xx 1 + 0 xx y),(-3 xx 1 + 1 xx 0, -3 xx 1 + 1 xx y)] = [(2, 2),(-3, -2)]`
`[(x + 0, x + 0),(-3 + 0, -3 + y)] = [(2, 2),(-3, -2)]`
`[(x, x),(-3, -3 + y)] = [(2, 2),(-3, -2)]`
Comparing the corresponding elements, we get
x = 2
–3 + y = –2 `=>` y = –2 + 3 = 1
APPEARS IN
संबंधित प्रश्न
If M = `[(1, 2),(2, 1)]` and I is a unit matrix of the same order as that of M; show that: M2 = 2M + 3I.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find AB,
`[(2sin 30° ,- 2 cos 60°),(- cot 45° , sin 90°)]`
`[(tan 45° , sec 60°),("cosec" 30° , cos 0°)]`
If A = `[(1, 0),(0, -1)]`, find A2 and A3.Also state that which of these is equal to A
Find x and y if `[(-3, 2),(0, -5)] [(x),(2)] = [(5),(y)]`
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
Find the value of x given that A2 = B Where A = `[(2, 12),(0, 1)] and "B" = [(4, x),(0, 1)]`
If A = `[(2, 3),(1, 2)]` find x and y so that A² – xA + yI
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(2, 4)]`, C = `[(4, 1),(1, 5)]` and I = `[(1, 0),(0, 1)]`. Find A(B + C) – 14I.
If matrix A = `[(2, 2),(0, 2)]` and A2 = `[(4, x),(0, 4)]`, then the value of x is ______.