Advertisements
Advertisements
प्रश्न
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(4, 3)]` and C = `[(4, 3),(1, 2)]`, find:
- (AB)C
- A(BC)
Is A(BC) = (AB)C?
उत्तर
i (AB)C = `[(1, 3),(2, 4)][(1, 2),(4, 3)] [(4, 3),(1, 2)]`
= `[(1(1) + 3(4), 1(2) + 3(3)),(2(1) + 4(4), 2(2) + 4(3))] = [(4, 3), (1, 2)]`
= `[(13, 11),(18, 16)][(4, 3),(1, 2)]`
= `[(13(4) + 11(1), 13(3) + 11(2)),(18(4) + 16(1), 18(3) + 16(2))]`
= `[(52 + 11, 39 + 22),(72 + 16, 54 + 32)]`
= `[(63, 61),(88, 86)]`
ii A(BC) = `[(1, 3),(2, 4)][(1, 2),(4, 3)][(4, 3),(1, 2)]`
= `[(1, 3),(2, 4)] [(1(4) + 2(1), 1(3) + 2(2)),(4(4) + 3(1), 4(3) + 3(2))]`
= `[(1, 3),(2, 4)][(4 + 2, 3 + 4),(16 + 3, 12 + 6)]`
= `[(1, 3),(2, 4)][(6, 7),(19, 18)]`
= `[(6 + 57, 7 + 54),(12 + 76,14 + 72)]`
= `[(63, 61),(88, 86)]`
∴ A(BC) = (AB)C
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible BA
If A = `[(2, 1, -1),(0, 1, -2)]`, Find A . At where At is the transpose of matrix A.
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
Given A = `[(1, 1),(8, 3)]`, evaluate A2 – 4A
If A = `[(1, 2),(2, 1)] and "B" = [(2, 1),(1, 2)]`, fin A(BA)
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute A(B + C)
If A = `[(1, 0),(0, -1)]`, find A2 and A3.Also state that which of these is equal to A
Find the value of x given that A2 = B Where A = `[(2, 12),(0, 1)] and "B" = [(4, x),(0, 1)]`
If `[(a, 1),(1, 0)] [(4, 3),(-3, 2)] = [(b, 11),(4, c)]` find a,b and c
Choose the correct answer from the given four options :
If A = `[(3, 1),(-1, 2)]`, then A2 =