Advertisements
Advertisements
Question
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(4, 3)]` and C = `[(4, 3),(1, 2)]`, find:
- (AB)C
- A(BC)
Is A(BC) = (AB)C?
Solution
i (AB)C = `[(1, 3),(2, 4)][(1, 2),(4, 3)] [(4, 3),(1, 2)]`
= `[(1(1) + 3(4), 1(2) + 3(3)),(2(1) + 4(4), 2(2) + 4(3))] = [(4, 3), (1, 2)]`
= `[(13, 11),(18, 16)][(4, 3),(1, 2)]`
= `[(13(4) + 11(1), 13(3) + 11(2)),(18(4) + 16(1), 18(3) + 16(2))]`
= `[(52 + 11, 39 + 22),(72 + 16, 54 + 32)]`
= `[(63, 61),(88, 86)]`
ii A(BC) = `[(1, 3),(2, 4)][(1, 2),(4, 3)][(4, 3),(1, 2)]`
= `[(1, 3),(2, 4)] [(1(4) + 2(1), 1(3) + 2(2)),(4(4) + 3(1), 4(3) + 3(2))]`
= `[(1, 3),(2, 4)][(4 + 2, 3 + 4),(16 + 3, 12 + 6)]`
= `[(1, 3),(2, 4)][(6, 7),(19, 18)]`
= `[(6 + 57, 7 + 54),(12 + 76,14 + 72)]`
= `[(63, 61),(88, 86)]`
∴ A(BC) = (AB)C
APPEARS IN
RELATED QUESTIONS
if `A = [(3,5),(4,-2)] and B = [(2),(4)]`is the product AB possible? Give a reason. If yes, find AB
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the matrix X.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find BA.
Given martices A = `[(2, 1),(4, 2)] and "B" = [(3, 4),(-1, -2)], "C" = [(-3, 1),(0, -2)]` Find the products of (i) ABC (ii) ACB and state whether they are equal.
Evaluate : `[(4sin30°, 2cos60°),(sin90°, 2cos0°)] [(4, 5),(5, 4)]`
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute (B + C)A
If X = `[(4, 1),(-1, 2)]`,show that 6X – X² = 9I Where I is the unit matrix.
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`