Advertisements
Advertisements
Question
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
Solution
Given
`[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
⇒ `[(2x + 2y, -y),(4x, -x + y)] = [(3),(2)]`
⇒ `[(2x, + y),(3x, + y)] = [(3),(2)]`
Comparing the corresponding elements
2x + y = 3 ...(i)
3x + y = 2 ...(ii)
Subtracting, we get
–x = 1
⇒ x = –1
Substituting the value of x in (i)
2(–1) + y = 3
⇒ –2 + y = 3
⇒ y = 3 + 2 = 5
Hence x = –1, y = 5.
APPEARS IN
RELATED QUESTIONS
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find AB.
Evaluate without using tables:
`[(2cos 60°, -2sin 30°),(-tan45°, cos 0°)] [(cos 45°, cosec 30°),(sec 60°, sin 90°)]`
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find AB,
If A = `[(-1, 3),(2, 4)], "B" = [(2, -3),(-4, -6)]` find the matrix AB + BA
A = `[(1, 2),(3, 4)] and "B" = [(6, 1),(1, 1)], "C" = [(-2, -3),(0, 1)]` find each of the following and state if they are equal.CA + B
If A = `[(2, 1),(0, -2)] and "B" = [(4, 1),(-3, -2)], "C" = [(-3, 2),(-1, 4)]` Find A2 + AC – 5B
If X = `[(4, 1),(-1, 2)]`,show that 6X – X² = 9I Where I is the unit matrix.
If `[(1, 2),(3, 3)] [(x, 0),(0, y)] = [(x, 0),(9, 0)]`find the values of x and y
Choose the correct answer from the given four options :
If A = `[(1, 0),(1, 1)]`, then A2 =