Advertisements
Advertisements
Question
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find AB.
Solution
AB = `[(4, 1),(2, 3)][(1, 0),(-2, 1)]`
= `[(4 - 2, 0 + 1),(2 - 6, 0 + 3)]`
= `[(2, 1),(-4, 3)]`
APPEARS IN
RELATED QUESTIONS
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
Given A = `[(1 , 1),(8 , 3)]` evaluate A2 - 4A.
If A = `[(2, 5),(1, 3)] "B" = [(1, -1),(-3, 2)]` , find AB and BA, Is AB = BA ?
Given A = `[(1, 1),(8, 3)]`, evaluate A2 – 4A
Given martices A = `[(2, 1),(4, 2)] and "B" = [(3, 4),(-1, -2)], "C" = [(-3, 1),(0, -2)]` Find the products of (i) ABC (ii) ACB and state whether they are equal.
Evaluate : `[(4sin30°, 2cos60°),(sin90°, 2cos0°)] [(4, 5),(5, 4)]`
If A = `[(2, 1),(0, -2)] and "B" = [(4, 1),(-3, -2)], "C" = [(-3, 2),(-1, 4)]` Find A2 + AC – 5B
If X = `[(4, 1),(-1, 2)]`,show that 6X – X² = 9I Where I is the unit matrix.
If `[(1, 3),(0, 0)] [(2),(-1)] = [(x),(0)]` Find the value of x
Choose the correct answer from the given four options :
A = `[(1, 0),(0, 1)]` then A2 =