Advertisements
Advertisements
Question
If A = `[(2, 5),(1, 3)] "B" = [(1, -1),(-3, 2)]` , find AB and BA, Is AB = BA ?
Solution
A = `[(2, 5),(1, 3)]`
B = `[(1, -1),(-3, 2)]`
∴ A x B = `[(2, 5),(1, 3)] xx [(1, -1),(-3, 2)]`
= `[(2 - 15, -2 + 10),(1 - 9, -1 + 6)]`
= `[(-13, 8),(-8, 5)]`
and
B x A = `[(1, -1),(-3, 2)] xx [(2, 5),(1, 3)]`
= `[(2 - 1, 5 - 3),(-6 + 2, -15 + 6)]`
= `[(1, 2),(-4, -9)]`
Hence AB ≠ BA.
APPEARS IN
RELATED QUESTIONS
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible AB
In the given case below find
a) The order of matrix M.
b) The matrix M
`M xx [(1,1),(0, 2)] = [1, 2]`
In the given case below, find:
- the order of matrix M.
- the matrix M.
- `M xx [(1, 1),(0, 2)] = [(1, 2)]`
- `[(1, 4),(2, 1)] xx M = [(13), (5)]`
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
If A = `[(2, 1, -1),(0, 1, -2)]`, Find A . At where At is the transpose of matrix A.
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the matrix X.
Construct a 2 x 2 matrix whose elements aij are given by `((i + 2j)^2)/(2)`.
Given martices A = `[(2, 1),(4, 2)] and "B" = [(3, 4),(-1, -2)], "C" = [(-3, 1),(0, -2)]` Find the products of (i) ABC (ii) ACB and state whether they are equal.
If A = `[(1, 0),(0, -1)]`, find A2 and A3.Also state that which of these is equal to A
If A = `[(1, 4),(0, -1)], "B" = [(2, x),(0, -1/2)]`find the value of x if AB = BA