Advertisements
Advertisements
Question
If A = `[(1, 0),(0, -1)]`, find A2 and A3.Also state that which of these is equal to A
Solution
A = `[(1, 0),(0, -1)]`
A2 = A x A = `[(1, 0),(0, -1)][(1, 0),(0, -1)]`
= `[(1 + 0, 0 + 0),(0 + 0, 0 + 1)]`
= `[(1, 0),(0, 1)]`
A3 = A2 + A = `[(1, 0),(0, 1)] xx [(1, 0),(0, -1)]`
= `[(1 + 0, 0 + 0),(0 + 0, 0 - 1)]`
= `[(1, 0),(0, -1)]`
From above it is clear that A3 = A.
APPEARS IN
RELATED QUESTIONS
Find x and y, if `[(4, 3x),(x, -2)][(5), (1)] = [(y),(8)]`
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find AB.
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the matrix X.
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
Find the 2 x 2 matrix X which satisfies the equation.
`[(3, 7),(2, 4)][(0 , 2),(5 , 3)] + 2"X" = [(1 , -5),(-4 , 6)]`
Find x and y if `[(-3, 2),(0, -5)] [(x),(2)] = [(5),(y)]`
Choose the correct answer from the given four options :
If A = `[(1, 0),(1, 1)]`, then A2 =
Choose the correct answer from the given four options :
If A = `[(2, -2),(-2, 2)]`, then A2 = pA, then the value of p is
If A = `[(1, 4),(1, 0)], "B" = [(2, 1),(3, -1)] and "C" = [(2, 3),(0, 5)]` compute (AB)C = (CB)A ?
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(2, 4)]`, C = `[(4, 1),(1, 5)]` and I = `[(1, 0),(0, 1)]`. Find A(B + C) – 14I.