Advertisements
Advertisements
Question
If A = `[(2, 1, -1),(0, 1, -2)]`, Find A . At where At is the transpose of matrix A.
Solution
A =`[(2, 1, -1),(0, 1, -2)]`
At = `[(2, 0),(1, 1),(-1, -2)]`
A . At = `[(2, 1, -1),(0, 1, -2)][(2, 0),(1, 1),(-1, -2)]`
= `[(4 + 1 + 1, 0 + 1 + 2),(0 + 1 + 2, 0 + 1 + 4)]`
= `[(6, 3),(3, 5)]`
APPEARS IN
RELATED QUESTIONS
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the order of the matrix X.
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
`[(2sin 30° ,- 2 cos 60°),(- cot 45° , sin 90°)]`
`[(tan 45° , sec 60°),("cosec" 30° , cos 0°)]`
If A = `[(1 , -2),(2, -1)] and "B" = [(3, 2),(-2, 1)]` Find 2B – A2
If A = `[(1, 2),(2, 3)] and "B" = [(2, 1),(3, 2)], "C" = [(1, 3),(3, 1)]` find the matrix C(B – A)
If X = `[(4, 1),(-1, 2)]`,show that 6X – X² = 9I Where I is the unit matrix.
If A = `[(1, 4),(0, -1)], "B" = [(2, x),(0, -1/2)]`find the value of x if AB = BA
Solve the matrix equation : `[(4),(1)],"X" = [(-4, 8),(-1, 2)]`
Choose the correct answer from the given four options :
A = `[(1, 0),(0, 1)]` then A2 =
If matrix A = `[(2, 2),(0, 2)]` and A2 = `[(4, x),(0, 4)]`, then the value of x is ______.