Advertisements
Advertisements
Question
Solve the matrix equation : `[(4),(1)],"X" = [(-4, 8),(-1, 2)]`
Solution
`[(4),(1)],"X" = [(-4, 8),(-1, 2)]`
Let matrix X = [x y]
∴ `[(4)/(1)][x, y] = [(-4, 8),(-1, 2)]`
⇒ `[(4x, 4y),(x, y)] = [(-4, 8),(-1, 2)]`
Comparing the corresponding elements
4x = –4 ⇒ x = –1
4y = 8 ⇒ y = 2
∴ X = [–1 2].
APPEARS IN
RELATED QUESTIONS
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(4, 3)]` and C = `[(4, 3),(1, 2)]`, find:
- (AB)C
- A(BC)
Is A(BC) = (AB)C?
If M = `[(4,1),(-1,2)]`, show that 6M – M2 = 9I; where I is a 2 × 2 unit matrix.
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the order of the matrix X.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find AB,
`[(2sin 30° ,- 2 cos 60°),(- cot 45° , sin 90°)]`
`[(tan 45° , sec 60°),("cosec" 30° , cos 0°)]`
Evaluate : `[(4sin30°, 2cos60°),(sin90°, 2cos0°)] [(4, 5),(5, 4)]`
A = `[(1, 2),(3, 4)] and "B" = [(6, 1),(1, 1)], "C" = [(-2, -3),(0, 1)]` find each of the following and state if they are equal.CA + B
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
Find x and y if `[(2x, x),(y, 3y)][(3),(2)] = [(16),(9)]`
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(2, 4)]`, C = `[(4, 1),(1, 5)]` and I = `[(1, 0),(0, 1)]`. Find A(B + C) – 14I.