Advertisements
Advertisements
Question
If A = `[(2, -1),(-4, 5)] and "B" = [(-3),(2)]` find the matrix C such that AC = B
Solution
Given
A = `[(2, -1),(-4, 5)]`
B = `[(-3),(2)]`
Let martix C = `[(x),(y)]`
∴ AC = `[(2, -1),(-4, 5)][(x),(y)] = [(2x - y),(-4x + 5y)]`
But AC = B
∴ `[(2x - y),(-4x + 5y)] = [(-3),(2)]`
Comparing the corresponding elements
2x – y = –3 ...(i)
–4x + 5y = 2 ...(ii)
Multiplying (i) by 5 and (ii) by 1
10x – 5y = –15
–4x + 5y = 2
Adding, we get
6x = –13
⇒ x = `(-13)/(6)`
Substituting the value of x in (i)
`2((-13)/6) - y` = –3
⇒ `(-13)/(3) - y` = –3
–y = `–3 + (13)/(3)`
= `(-9 + 13)/(3)`
= `(4)/(3)`
∴ y = `-(4)/(3)`
∴ Matrix C = `[((-13)/6),(-4/3)]`.
APPEARS IN
RELATED QUESTIONS
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
If A = `[(0, -1),(4, -3)]`, B = `[(-5),(6)]` and 3A × M = 2B; find matrix M.
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` , find : A + B
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
If A = `[(3, 7),(2, 4)]`, B = `[(0, 2),(5, 3)]` and C = `[(1, -5),(-4, 6)]`. Find AB – 5C.
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Write the order of matrix X.
Find the values of x, y, a and b if `[(x - 2, y),(a + 2b, 3a - b)] = [(3, 1),(5, 1)]`
Choose the correct answer from the given four options :
If `x[(2),(3)] + y[(-1),(0)] = [(10),(6)]` then the values of x and y are
If A = `[(3, 3),(p, q)]` and A2 = 0 find p and q