Advertisements
Advertisements
प्रश्न
If A = `[(2, -1),(-4, 5)] and "B" = [(-3),(2)]` find the matrix C such that AC = B
उत्तर
Given
A = `[(2, -1),(-4, 5)]`
B = `[(-3),(2)]`
Let martix C = `[(x),(y)]`
∴ AC = `[(2, -1),(-4, 5)][(x),(y)] = [(2x - y),(-4x + 5y)]`
But AC = B
∴ `[(2x - y),(-4x + 5y)] = [(-3),(2)]`
Comparing the corresponding elements
2x – y = –3 ...(i)
–4x + 5y = 2 ...(ii)
Multiplying (i) by 5 and (ii) by 1
10x – 5y = –15
–4x + 5y = 2
Adding, we get
6x = –13
⇒ x = `(-13)/(6)`
Substituting the value of x in (i)
`2((-13)/6) - y` = –3
⇒ `(-13)/(3) - y` = –3
–y = `–3 + (13)/(3)`
= `(-9 + 13)/(3)`
= `(4)/(3)`
∴ y = `-(4)/(3)`
∴ Matrix C = `[((-13)/6),(-4/3)]`.
APPEARS IN
संबंधित प्रश्न
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
Given `[(2, 1),(-3,4)]` . X = `[(7),(6)]`. Write:
- the order of the matrix X.
- the matrix X.
Given `[(2, 1),(-3, 4)] x = [(7),(6)]` Write the matrix x.
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
Find the value of x, given that A2 = B,
A = `[(2, 12),(0, 1)]` and B = `[(4, x),(0, 1)]`
Solve for x and y:
`[(x + y, x - 4)][(-1, -2),(2, 2)] = [(-7, -11)]`
If A = [4 7] and B = [3 1] , find: A+2B
If A = `[(3, 7),(2, 4)]`, B = `[(0, 2),(5, 3)]` and C = `[(1, -5),(-4, 6)]`. Find AB – 5C.
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`,find values of x and y
Find the values of a, b, c and d if `[(a + b, 3),(5 + c, ab)] = [(6, d),(-1, 8)]`