Advertisements
Advertisements
प्रश्न
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
उत्तर
Given, A + X = 2B + C
`[(2, -1),(2, 0)] + X = 2[(-3, 2),(4, 0)] + [(1, 0),(0, 2)]`
`[(2,-1),(2, 0)] + X = [(-6, 4),(8, 0)] + [(1, 0),(0, 2)]`
`[(2, -1),(2, 0)] + X = [(-5, 4),(8, 2)]`
`X = [(-5, 4),(8, 2)] - [(2, -1),(2, 0)]`
`X = [(-7, 5),(6, 2)]`
APPEARS IN
संबंधित प्रश्न
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
if `A [(3,7),(2,4)], B = [(0,2),(5,3)]` and `C = [(1,-5),(-4,6)]` Find AB - 5C
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find (AB)B
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
If `|(3"a" + 2"b" , 2"a" - "b"),(4"p" - 3"q" , 2"p" + "q")|` = `|(12 , 1),(16 , 8)|` , find the values of a , b , p and q.
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
If A = `[(1,3), (3,4)]` B = `[(-2,1), (-3,2)]` and `A^2 - 5B^2 = 5C` Find the matrix C where C is a 2 by 2 matrix.
Find x and y if
`[( x , 3x),(y , 4y)][(2),(1)] = [(5),(12)]`.
Find the values of a, b, c and d if `[(a + b, 3),(5 + c, ab)] = [(6, d),(-1, 8)]`
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B