Advertisements
Advertisements
प्रश्न
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B
उत्तर
Given
A = `[(sec60°, cos90°),(-3tan45°, sin90°)]`
and
B = `[(0, cos45°),(-2, 3sin90°)]`
A = `[(sec60° , cos90°),(-3tan45°, sin90°)] = [(2, 0),(3, 1)]` ...(∵ sec60° = 2, cos90° = 0, tan45° = 1, sin90° = 1)
B = `[(0, cos45°),(-2, 3sin90°)] = [(0, 1),(-2, 3)]` ...(∵ cot45° = 1)
2A – 3B
= `2[(2, 0),(3, 1)] -3[(0, 1),(2, 3)]`
= `[(4, 0),(6, 2)] - [(0, 3),(-6, 9)]`
= `[(4 - 0, 0 - 3),(-6 + 6, 2 - 9)]`
= `[(4, -3),(0, -7)]`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`[(cos 45°, sin 30°),(sqrt(2) cos 0°, sin 0°)] [(sin 45°, cos 90°),(sin 90°, cot 45°)]`
If matrix X = `[(-3, 4),(2, -3)][(2),(-2)]` and 2X – 3Y = `[(10),(-8)]`, find the matrix ‘X’ and matrix ‘Y’.
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
Solve for x and y:
`[(x + y, x - 4)][(-1, -2),(2, 2)] = [(-7, -11)]`
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
Given `[["4 " " 2" ],[" -1 "" 1 " ]]` M = 6I , where M is a matrix and I is unit matrix of order 2×2.
(i) State the order of matrix M.
(ii) Find the matrix M.
If A = [4 7] and B = [3 l], find: A - B
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : A2