Advertisements
Advertisements
प्रश्न
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
उत्तर
A2 = 9A + MI
⇒ A2 - 9A = mI ….(1)
Now, A2 = AA
= `[(2,0), (-1,7)][(2,0), (-1,7)]`
= `[(4,0), (-9,49)]`
Substituting A2 in (1), we have
A2 - 9A = mI
`=> [(4,0), (-9,49)]-9[(2,0), (-1,7)] =m[(1,0), (0,1)]`
`=> [(4,0), (-9,49)] - [(18,0), (-9,63)] = [(m,0), (0,m)]`
`=> [(-14,0), (0,-14)] = [(m,0), (0,m)]`
`=>` m = -14
APPEARS IN
संबंधित प्रश्न
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
Evaluate:
`[(cos 45°, sin 30°),(sqrt(2) cos 0°, sin 0°)] [(sin 45°, cos 90°),(sin 90°, cot 45°)]`
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find A(BA)
Find the value of x, given that A2 = B,
A = `[(2, 12),(0, 1)]` and B = `[(4, x),(0, 1)]`
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find A - 2B
If A =`|(1, 9 , 4),(5 , 0 , 3)|` , find negative A
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`
Choose the correct answer from the given four options :
If A + B = `[(1, 0),(1, 1)]` and A – 2B = `[(-1, 1),(0, -1)]` then A is equal to
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : BA