Advertisements
Advertisements
प्रश्न
If A = `[(3, 1),(-1, 2)]` and I = `[(1, 0),(0, 1)]`, find A2 – 5A + 7I.
उत्तर
A = `[(3, 1),(-1, 2)]` and I = `[(1, 0),(0, 1)]`
A2 = `[(3, 1),(-1, 2)][(3, 1),(-1, 2)]`
= `[(9 - 1, 3 + 2),(-3 - 2, -1 + 4)]`
= `[(8, 5),(-5, 3)]`
A2 – 5A + 7I = `[(8, 5),(-5, 3)] - 5[(3, 1),(-1, 2)] + 7[(1, 0),(0, 1)]`
= `[(8, 5),(-5, 3)] - [(15, 5),(-5, 10)] + [(7, 0),(0, 7)]`
= `[(-7, 0),(0, -7)] + [(7, 0),(0, 7)]`
= `[(0, 0),(0, 0)]`
= 0
APPEARS IN
संबंधित प्रश्न
If A and B are any two 2 × 2 matrices such that AB = BA = B and B is not a zero matrix, what can you say about the matrix A?
Given `[(2, 1),(-3, 4)] X = [(7), (6)]` write the order of matrix x
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
Given `[["4 " " 2" ],[" -1 "" 1 " ]]` M = 6I , where M is a matrix and I is unit matrix of order 2×2.
(i) State the order of matrix M.
(ii) Find the matrix M.
If P = (8 , 5),(7 , 2) , find Pt
If A = `[(3, 7),(2, 4)]`, B = `[(0, 2),(5, 3)]` and C = `[(1, -5),(-4, 6)]`. Find AB – 5C.
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
Find X and Y, if
`[(2x, x),(y , 3y)][(3),(2)] = [(16),(9)]`
Find x and y, if `((x,3x),(y, 4y))((2),(1)) = ((5),(12))`.