Advertisements
Advertisements
प्रश्न
Find X and Y, if
`[(2x, x),(y , 3y)][(3),(2)] = [(16),(9)]`
उत्तर
`[(2x, x),(y , 3y)][(3),(2)] = [(16),(9)]`
`[(6x + 2x),(3y + 6y)] = [(16),(9)]`
`[(8x),(9y)] = [(16),(9)]`
8x = 16, x = 2
9y = 9, y = 1.
APPEARS IN
संबंधित प्रश्न
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
if `A = [(3,x),(0,1)], B = [(9,16),(0,-y)]`, Find x and y where `A^2 = B`
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
Given `[(2, 1),(-3, 4)] X = [(7), (6)]` write the order of matrix x
Given A = `[(p, 0),(0, 2)]`, B = `[(0, -q),(1, 0)]`, C = `[(2, -2),(2, 2)]` and BA = C2. Find the values of p and q.
Solve for x and y:
`[(x + y, x - 4)][(-1, -2),(2, 2)] = [(-7, -11)]`
Evaluate x,y if
`[(3 , -2),(-1 , 4)][(2x),(1)]+2[(-4),(5)] = [(8),(4y)]`
Let `"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`. Find A2 - A + BC
If `"A" = [(a , b),(c , d)] and "I" = [(1 , 0),(0 , 1)]` show that A2 - (a + d) A = (bc - ad) I.
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B