हिंदी

Given matrix B = [1183]. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given X[ab]=[550]. - Mathematics

Advertisements
Advertisements

प्रश्न

Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.

योग

उत्तर

Given B = `[(1, 1),(8, 3)]` and X = B2 – 4B

Now B2 = B × B

= `[(1, 1),(8, 3)] xx [(1, 1),(8, 3)]`

= `[(1 xx 1 + 1 xx 8, 1 xx 1 + 1 xx 3),(8 xx 1 + 3 xx 8, 8 xx 1 + 3 xx 3)]`

= `[(1 + 8, 1 + 3),(8 + 24, 8 + 9)]`

= `[(9, 4),(32, 17)]`

X = B2 – 4B

= `[(9, 4),(32, 17)] - 4[(1, 1),(8, 3)]`

= `[(9, 4),(32, 17)] - [(4, 4),(32, 12)]`

= `[(5, 0),(0, 5)]`

Now `X[(a),(b)] = [(5),(50)]`

`=> [(5, 0),(0, 5)][(a),(b)] = [(5),(50)]`

`=> [(5a + 0b),(0a + 5b)] = [(5),(50)]`

`=> [(5a),(5b)] = [(5),(50)]`

`=>` 5a = 5 and 5b = 50

`=>` a = 1 and b = 10

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×