Advertisements
Advertisements
प्रश्न
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
उत्तर
Given B = `[(1, 1),(8, 3)]` and X = B2 – 4B
Now B2 = B × B
= `[(1, 1),(8, 3)] xx [(1, 1),(8, 3)]`
= `[(1 xx 1 + 1 xx 8, 1 xx 1 + 1 xx 3),(8 xx 1 + 3 xx 8, 8 xx 1 + 3 xx 3)]`
= `[(1 + 8, 1 + 3),(8 + 24, 8 + 9)]`
= `[(9, 4),(32, 17)]`
X = B2 – 4B
= `[(9, 4),(32, 17)] - 4[(1, 1),(8, 3)]`
= `[(9, 4),(32, 17)] - [(4, 4),(32, 12)]`
= `[(5, 0),(0, 5)]`
Now `X[(a),(b)] = [(5),(50)]`
`=> [(5, 0),(0, 5)][(a),(b)] = [(5),(50)]`
`=> [(5a + 0b),(0a + 5b)] = [(5),(50)]`
`=> [(5a),(5b)] = [(5),(50)]`
`=>` 5a = 5 and 5b = 50
`=>` a = 1 and b = 10
APPEARS IN
संबंधित प्रश्न
Find the value of and 'y' if:
`2[(x,y),(9 , (y - 5))] + [(6,4),(-7,5)] = [(10,7),(22,15)]`
If A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]` and I is the identity matric of the same order and At is the transpose of matrix A, find At.B + BI.
Given A = `[(3, -2),(-1, 4)]`, B = `[(6),(1)]`, C = `[(-4),(5)]` and D = `[(2),(2)].` Find : AB + 2C – 4D
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find (AB)B
Find the value of x, given that A2 = B,
A = `[(2, 12),(0, 1)]` and B = `[(4, x),(0, 1)]`
If M = `|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10 , 1)|` find M+N
If `|(3"a" + 2"b" , 2"a" - "b"),(4"p" - 3"q" , 2"p" + "q")|` = `|(12 , 1),(16 , 8)|` , find the values of a , b , p and q.
If `[(-1, 0),(0, 1)] [(a, b),(c, d)] = [(1, 0),(0, -1)]` find a,b,c and d
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B