Advertisements
Advertisements
प्रश्न
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
उत्तर
Given B = `[(1, 1),(8, 3)]` and X = B2 – 4B
Now B2 = B × B
= `[(1, 1),(8, 3)] xx [(1, 1),(8, 3)]`
= `[(1 xx 1 + 1 xx 8, 1 xx 1 + 1 xx 3),(8 xx 1 + 3 xx 8, 8 xx 1 + 3 xx 3)]`
= `[(1 + 8, 1 + 3),(8 + 24, 8 + 9)]`
= `[(9, 4),(32, 17)]`
X = B2 – 4B
= `[(9, 4),(32, 17)] - 4[(1, 1),(8, 3)]`
= `[(9, 4),(32, 17)] - [(4, 4),(32, 12)]`
= `[(5, 0),(0, 5)]`
Now `X[(a),(b)] = [(5),(50)]`
`=> [(5, 0),(0, 5)][(a),(b)] = [(5),(50)]`
`=> [(5a + 0b),(0a + 5b)] = [(5),(50)]`
`=> [(5a),(5b)] = [(5),(50)]`
`=>` 5a = 5 and 5b = 50
`=>` a = 1 and b = 10
APPEARS IN
संबंधित प्रश्न
Evaluate:
`3[(5, -2)]`
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find A(BA)
If matrix X = `[(-3, 4),(2, -3)][(2),(-2)]` and 2X – 3Y = `[(10),(-8)]`, find the matrix ‘X’ and matrix ‘Y’.
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
If A = [4 7] and B = [3 1] , find: A+2B
If `|(3"a" + 2"b" , 2"a" - "b"),(4"p" - 3"q" , 2"p" + "q")|` = `|(12 , 1),(16 , 8)|` , find the values of a , b , p and q.
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`,find values of x and y