Advertisements
Advertisements
प्रश्न
If `|(3"a" + 2"b" , 2"a" - "b"),(4"p" - 3"q" , 2"p" + "q")|` = `|(12 , 1),(16 , 8)|` , find the values of a , b , p and q.
उत्तर
`|(3"a" + 2"b" , 2"a" - "b"),(4"p" - 3"q" , 2"p" + "q")|` = `|(12 , 1),(16 , 8)|`
3a + 2b = 12 -(1)
2a - b = 1 -(2)
b = 2a - 1
4p - 3q = 16 -(3)
2p + q = 8 -(4)
putting the value of b in (1)
3a + 4a - 2 = 12
7a = 14
a = 2
from (2)
4 - b = 1
b = 3
putting the value of q in (3)
4p - 24 + 6p = 16
10 p = 40
p = 4
from(4)
8 + q = 8
q = 0
APPEARS IN
संबंधित प्रश्न
If A = `[(2, 1, -1),(0, 1, -2)]`, Find At . A where At is the transpose of matrix A.
Given `[(2, 1),(-3, 4)] x = [(7),(6)]` Write the matrix x.
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
Find the value of x, given that A2 = B,
A = `[(2, 12),(0, 1)]` and B = `[(4, x),(0, 1)]`
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
Given that A = `[(3, 0),(0, 4)]` and B = `[(a, b),(0, c)]` and that AB = A + B, find the values of a, b and c.
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`
If `[(-1, 0),(0, 1)] [(a, b),(c, d)] = [(1, 0),(0, -1)]` find a,b,c and d