Advertisements
Advertisements
प्रश्न
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
उत्तर
Given, A + X = 2B + C
`[(2, -1),(2, 0)] + X = 2[(-3, 2),(4, 0)] + [(1, 0),(0, 2)]`
`[(2,-1),(2, 0)] + X = [(-6, 4),(8, 0)] + [(1, 0),(0, 2)]`
`[(2, -1),(2, 0)] + X = [(-5, 4),(8, 2)]`
`X = [(-5, 4),(8, 2)] - [(2, -1),(2, 0)]`
`X = [(-7, 5),(6, 2)]`
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C. Find matrix C where C is a 2 by 2 matrix.
Find x and y if `[(x,3x),(y, 4y)] = [(5),(12)]`
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
Evaluate the following :
`|(-2 , 3),(-1 , 4)| |(6 , 4),(3 ,- 1)|`
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
Find the values of x and y if : `[(2x + y),(3x - 2y)] = [(5),(4)]`
Choose the correct answer from the given four options :
If `[(x - 2y, 5),(3, y)] = [(6, 5),(3, -2)]` then the value of x is
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
If A = `[(3, 3),(p, q)]` and A2 = 0 find p and q
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B