Advertisements
Advertisements
प्रश्न
If matrix X = `[(-3, 4),(2, -3)][(2),(-2)]` and 2X – 3Y = `[(10),(-8)]`, find the matrix ‘X’ and matrix ‘Y’.
उत्तर
Given: X = `[(-3, 4),(2, -3)][(2),(-2)]`
= `[(-3 xx 2 + 4 xx (-2)),(2 xx 2 + (-3)(-2))]`
= `[(-6 - 8),(4 + 6)]`
= `[(-14),(10)]`
Let Y = `[(a),(b)]_(2 xx 1)`
∴ 2X – 3Y = `2[(-14),(10)] - 3[(a),(b)]`
= `[(-28),(20)] - [(3a),(3b)]`
= `[(-28 - 3a),(20 - 3b)]`
∴ `[(-28 - 3a),(20 - 3b)] = [(10),(-8)]`
∴ Comparing the elements, we have
–28 – 3a = 10
`\implies` –3a = 10 + 28
`\implies` –3a = 38
`\implies a = -38/3` and 20 – 3b = – 8
`\implies` –3b = – 8 – 20 = –28
∴ `b = 28/3`
∴ Y = `[(a),(b)]`
= `[((-38)/3),(28/3)]`
= `1/3 [(-38),(28)]`
APPEARS IN
संबंधित प्रश्न
Given `[(2, 1),(-3,4)]` . X = `[(7),(6)]`. Write:
- the order of the matrix X.
- the matrix X.
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find A(BA)
If A = [4 7] and B = [3 l], find: A - B
If P =`|(2,9),(5,7)|` and Q = `|(7,3),(4,1)|` find 2Q - P
If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q
Evaluate the following :
`|(2 , -5),(0 , -3)| |(1 , -1),(3 , 2)|`
Find the value of p and q if:
`[(2p + 1 , q^2 - 2),(6 , 0)] = [(p + 3, 3q - 4),(5q - q^2, 0)]`.
If A = `[(3/5, 2/5),(x, y)]` and A2 = I, find x,y