Advertisements
Advertisements
Question
If matrix X = `[(-3, 4),(2, -3)][(2),(-2)]` and 2X – 3Y = `[(10),(-8)]`, find the matrix ‘X’ and matrix ‘Y’.
Solution
Given: X = `[(-3, 4),(2, -3)][(2),(-2)]`
= `[(-3 xx 2 + 4 xx (-2)),(2 xx 2 + (-3)(-2))]`
= `[(-6 - 8),(4 + 6)]`
= `[(-14),(10)]`
Let Y = `[(a),(b)]_(2 xx 1)`
∴ 2X – 3Y = `2[(-14),(10)] - 3[(a),(b)]`
= `[(-28),(20)] - [(3a),(3b)]`
= `[(-28 - 3a),(20 - 3b)]`
∴ `[(-28 - 3a),(20 - 3b)] = [(10),(-8)]`
∴ Comparing the elements, we have
–28 – 3a = 10
`\implies` –3a = 10 + 28
`\implies` –3a = 38
`\implies a = -38/3` and 20 – 3b = – 8
`\implies` –3b = – 8 – 20 = –28
∴ `b = 28/3`
∴ Y = `[(a),(b)]`
= `[((-38)/3),(28/3)]`
= `1/3 [(-38),(28)]`
APPEARS IN
RELATED QUESTIONS
Find x and y if `[(x,3x),(y, 4y)] = [(5),(12)]`
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
Let `A = [(1, 0),(2, 1)], B = [(2, 3),(-1, 0)]`. Find `A^2 + AB + B^2`
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
Given `[["4 " " 2" ],[" -1 "" 1 " ]]` M = 6I , where M is a matrix and I is unit matrix of order 2×2.
(i) State the order of matrix M.
(ii) Find the matrix M.
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` , find : A + B
If A = [4 7] and B = [3 l], find : 2A - 3B
If P = (8 , 5),(7 , 2) , find Pt
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
If `[(-1, 0),(0, 1)] [(a, b),(c, d)] = [(1, 0),(0, -1)]` find a,b,c and d