Advertisements
Advertisements
Question
Given `[["4 " " 2" ],[" -1 "" 1 " ]]` M = 6I , where M is a matrix and I is unit matrix of order 2×2.
(i) State the order of matrix M.
(ii) Find the matrix M.
Solution
(i) `[["4 " " 2" ],[" -1 "" 1 " ]] M = 6I , 6 [[ "1 " " 0" ],[" 0 " " 1 " ]]`
`[["4 " " 2" ],[" -1 "" 1 " ]] M = [[ "6 " " 0" ],[" 0 " " 6 " ]]`
∴ M has the order of 2 × 2
(ii) Let us assume the matrix M = `[["a " " b" ],[" c " " d "]]`
`[["4 " " 2" ],[" -1 "" 1 " ]] [["a " " b" ],[" c " " d "]] = [[ "6 " " 0" ],[" 0 " " 6 " ]]`
⇒ `[["4a + 2c " " 4b + 2d" ],["-a + c " " -b + d" ]] = [[ "6 " " 0" ],[" 0 " " 6 " ]]`
⇒ -a + c = 0 ⇒ a = c
4b + 2d = 0
⇒ 4b = -2d
d = - 2b
Now , 4a + 2c = 6 ⇒ 4a + 2a = 6 ⇒ 6a= 6 ⇒ a = 1 - C
also , - b + d = 6
- b + (-2b) = 6
- 3b = 6
b = -2
∴ a = 1 , b = -2 , c = 1 , d = 4
APPEARS IN
RELATED QUESTIONS
If A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C. Find matrix C where C is a 2 by 2 matrix.
Given `[(2, 1),(-3, 4)] X = [(7), (6)]` write the order of matrix x
Let A = `[(4, -2),(6, -3)]`, B = `[(0, 2),(1, -1)]` and C = `[(-2, 3),(1, -1)]`. Find A2 – A + BC
If P = `|(2 , 9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` , find 2P + 3Q
If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q
If A = `[(3, 7),(2, 4)]`, B = `[(0, 2),(5, 3)]` and C = `[(1, -5),(-4, 6)]`. Find AB – 5C.
Find the value of x given that A2 = B
A = `[(2, 12),(0 , 1)]` B = `[(4, x),(0, 1)]`
Choose the correct answer from the given four options :
If A + B = `[(1, 0),(1, 1)]` and A – 2B = `[(-1, 1),(0, -1)]` then A is equal to
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : BA