Advertisements
Advertisements
Question
Choose the correct answer from the given four options :
If A + B = `[(1, 0),(1, 1)]` and A – 2B = `[(-1, 1),(0, -1)]` then A is equal to
Options
`(1)/(3)[(1, 1),(2, 1)]`
`(1)/(3)[(2, 1),(1, 2)]`
`[(1, 1),(2, 1)]`
`[(2, 1),(1, 2)]`
Solution
A + B = `[(1, 0),(1, 1)]`
and
A – 2B = `[(-1, 1),(0, -1)]`
⇒ 2A + 2B = `[(2, 0),(2, 2)]` (Multiplying by 2)...(i)
A – 2B = `[(-1, 1),(0, -1)]` ...(ii)
Adding (i) and (ii), we get
3A = `[(2, 0),(2, 2)] + [(-1, 1),(0, -1)]`
= `[(1, 1),(2, 1)]`
∴ A = `(1)/(3)[(1, 1),(2, 1)]`.
APPEARS IN
RELATED QUESTIONS
If A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]` and I is the identity matric of the same order and At is the transpose of matrix A, find At.B + BI.
Let A = `[(4, -2),(6, -3)]`, B = `[(0, 2),(1, -1)]` and C = `[(-2, 3),(1, -1)]`. Find A2 – A + BC
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find : 2A + 3B
If A = [4 7] and B = [3 l], find: A - B
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
Let A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`. Find A2 + AB + B2
Choose the correct answer from the given four options :
If `[(x + 2y, -y),(3x, 7)] = [(-4, 3),(6, 4)]` then the values of x and y are
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B