Advertisements
Advertisements
Question
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
Solution
Let X = `[(x , y),(z , u)]`
We have A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`
3A = `3[(9 , 1),(5 , 3)] = [(27 , 3),(15 , 9)]`
5B = `5[(1 , 5),(7 , -11)] = [(5 , 25),(35 , -55)]`
Now 3A + 5B - 2X = 0
⇒ `[(27 , 3),(15 , 9)] + [(5 , 25),(35 , -55)] + [(-2x , -2y),(-2z , -2u)] = [(0 , 0),(0 , 0)]`
⇒ `[(27 + 5 - 2x , 3 + 25 - 2y),(15 + 35 - 2z , 9 - 55 - 2u)] = [(0 , 0),(0 , 0)]`
⇒ `[(32 - 2x , 28 - 2y),(50 - 2z , -46 - 2u)] = [(0 , 0),(0 , 0)]`
⇒ 32 - 2x = 0 ⇒ 2x - 32 ⇒ x = 16
28 - 2y = 0 ⇒ 2y = 28 ⇒ y = 14
50 - 2z = 0 ⇒ 2z = 50 ⇒ z = 25
-46 - 2u = 0 ⇒ 2u = -46 ⇒ u = -23.
APPEARS IN
RELATED QUESTIONS
if `A [(3,7),(2,4)], B = [(0,2),(5,3)]` and `C = [(1,-5),(-4,6)]` Find AB - 5C
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find : 2A + 3B
If P = (8 , 5),(7 , 2) , find Pt
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`,find values of x and y
If A = `[(2, -1),(-4, 5)] and "B" = [(-3),(2)]` find the matrix C such that AC = B
Choose the correct answer from the given four options :
If `[(x + 2y, -y),(3x, 7)] = [(-4, 3),(6, 4)]` then the values of x and y are
Choose the correct answer from the given four options :
If `[(x - 2y, 5),(3, y)] = [(6, 5),(3, -2)]` then the value of x is
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : A2