Advertisements
Advertisements
प्रश्न
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
उत्तर
Let X = `[(x , y),(z , u)]`
We have A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`
3A = `3[(9 , 1),(5 , 3)] = [(27 , 3),(15 , 9)]`
5B = `5[(1 , 5),(7 , -11)] = [(5 , 25),(35 , -55)]`
Now 3A + 5B - 2X = 0
⇒ `[(27 , 3),(15 , 9)] + [(5 , 25),(35 , -55)] + [(-2x , -2y),(-2z , -2u)] = [(0 , 0),(0 , 0)]`
⇒ `[(27 + 5 - 2x , 3 + 25 - 2y),(15 + 35 - 2z , 9 - 55 - 2u)] = [(0 , 0),(0 , 0)]`
⇒ `[(32 - 2x , 28 - 2y),(50 - 2z , -46 - 2u)] = [(0 , 0),(0 , 0)]`
⇒ 32 - 2x = 0 ⇒ 2x - 32 ⇒ x = 16
28 - 2y = 0 ⇒ 2y = 28 ⇒ y = 14
50 - 2z = 0 ⇒ 2z = 50 ⇒ z = 25
-46 - 2u = 0 ⇒ 2u = -46 ⇒ u = -23.
APPEARS IN
संबंधित प्रश्न
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
Given `[["4 " " 2" ],[" -1 "" 1 " ]]` M = 6I , where M is a matrix and I is unit matrix of order 2×2.
(i) State the order of matrix M.
(ii) Find the matrix M.
If P = `|(2 , 9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` , find 2P + 3Q
If P = (8 , 5),(7 , 2) , find Pt
Evaluate the following :
`|(-2 , 3),(-1 , 4)| |(6 , 4),(3 ,- 1)|`
A = `[(3 , 1),(-1 , 2)]`, show that A2 - 5A + 7 I2 = 0.
Let A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`. Find A2 + AB + B2
Choose the correct answer from the given four options :
If `[(x - 2y, 5),(3, y)] = [(6, 5),(3, -2)]` then the value of x is
Find a and b if `[(a - b, b - 4),(b + 4, a - 2)] [(2, 0),(0, 2)] = [(2, -2),(14, 0)]`