Advertisements
Advertisements
प्रश्न
Let `"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`. Find A2 - A + BC
उत्तर
`"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`.
∴ A2 = `[(4 , -2),(6 , -3)][(4 , -2),(6 , -3)]`
= `[(16 - 12, -8 +6),(24 - 18, -12 + 9)]`
∴ A2 = `[(4 , -2),(6 , -3)]`
BC = `[(0 , 2),(1 , -1)][(-2 , 3),(1 , -1)] = [(0 + 2 , 0 -2),(-2 - 1, 3 + 1)]`
= `[(2 , -2),(-3 , 4)]`
Now A2 - A + BC
= `[(4 , -2),(6 , -3)] - [(4 , -2),(6 , -3)] + [(2 , -2),(-3 , 4)]`
= `[(0 , 0),(0 , 0)] + [(2 , -2),(-3 , 4)] = [(2 , -2),(-3 , 4)]`
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C. Find matrix C where C is a 2 by 2 matrix.
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
Evaluate:
`7[(-1, 2),(0, 1)]`
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
If A = [4 7] and B = [3 1] , find: A+2B
If P = (8 , 5),(7 , 2) , find Pt
Evaluate the following :
`|(-2 , 3),(-1 , 4)| |(6 , 4),(3 ,- 1)|`
Find x and y if
`[( x , 3x),(y , 4y)][(2),(1)] = [(5),(12)]`.
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C
Choose the correct answer from the given four options :
If `[(x + 2y, 3y),(4x, 2)] = [(0, -3),(8, 2)]` then the value of x – y is