Advertisements
Advertisements
प्रश्न
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C
उत्तर
B = `[(-4, 2),(5, -1)]`
C = `[(17, -1),(47, -13)]`
and AB = C
Let A = `[(a, b),(c, d)]`
Then AB = `[(a, b),(c, d)] xx [(-4, 2),(5, -1)]`
= `[(-4a + 5b, 2a - b),(-4c + 5d, 2c - d)]`
∵ AB = C
∴ `[(-4a + 5b, 2a - b),(-4c + 5d, 2c - d)] = [(17, -1),(47, 13)]`
Comparing corresponding elements, we get
∵ –4a + 5b = 17 ....(i)
2a – b = –1 ....(ii)
–4c + 5d = 47 ....(iii)
2c –d = –13 ....(iv)
Multiplying (i) by 1 and (ii) by 2
⇒ –4a + 5b = 17
4a – 2b = –2
Adding
3b = 15
⇒ b = `(15)/(3)` = 5
2a – b = –1
⇒ 2a – 5 = –1
⇒ 2a = –1 + 5 = 4
⇒ a = `(4)/(2) + 2`
∴ a = 2, b = 5
Again multiplying (iii) by 1 and (iv) by 2,
–4c + 5d = 47
4c – 2d = –26
Adding
3d = 21
⇒ d = `(21)/(3)` = 7
and
2c – d = –13
⇒ 2c – 7 = –13
⇒ 2c = –13 + 7 = –6
⇒ c = `(-6)/(2)` = –3
∴ c = –3, d = 7
Now matrix A = `[(2, 5),(-3, 7)]`.
APPEARS IN
संबंधित प्रश्न
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
If matrix X = `[(-3, 4),(2, -3)][(2),(-2)]` and 2X – 3Y = `[(10),(-8)]`, find the matrix ‘X’ and matrix ‘Y’.
If P =`|(2,9),(5,7)|` and Q = `|(7,3),(4,1)|` find 2Q - P
If P = (8 , 5),(7 , 2) , find Pt
Find X and Y, if
`[(2x, x),(y , 3y)][(3),(2)] = [(16),(9)]`
Find x and y if:
`((-3, 2),(0 , 5)) ((x),(y)) = ((-5),(y))`
If A = `[(3 , 1),(-1 , 2)]` and I = `[(1 , 0),(0, 1)]`
find A2 - 5A + 7 I.
Find the values of x, y and z if `[(x + 2, 6),(3, 5z)] = [(-5, y^2 + y),(3, 20)]`
If A = `[(2, -1),(-4, 5)] and "B" = [(-3),(2)]` find the matrix C such that AC = B
If A = `[(3, -4),(-1, 2)]`, find matrix B such that BA = I,where I is unity matrix of order 2