Advertisements
Advertisements
प्रश्न
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C
उत्तर
B = `[(-4, 2),(5, -1)]`
C = `[(17, -1),(47, -13)]`
and AB = C
Let A = `[(a, b),(c, d)]`
Then AB = `[(a, b),(c, d)] xx [(-4, 2),(5, -1)]`
= `[(-4a + 5b, 2a - b),(-4c + 5d, 2c - d)]`
∵ AB = C
∴ `[(-4a + 5b, 2a - b),(-4c + 5d, 2c - d)] = [(17, -1),(47, 13)]`
Comparing corresponding elements, we get
∵ –4a + 5b = 17 ....(i)
2a – b = –1 ....(ii)
–4c + 5d = 47 ....(iii)
2c –d = –13 ....(iv)
Multiplying (i) by 1 and (ii) by 2
⇒ –4a + 5b = 17
4a – 2b = –2
Adding
3b = 15
⇒ b = `(15)/(3)` = 5
2a – b = –1
⇒ 2a – 5 = –1
⇒ 2a = –1 + 5 = 4
⇒ a = `(4)/(2) + 2`
∴ a = 2, b = 5
Again multiplying (iii) by 1 and (iv) by 2,
–4c + 5d = 47
4c – 2d = –26
Adding
3d = 21
⇒ d = `(21)/(3)` = 7
and
2c – d = –13
⇒ 2c – 7 = –13
⇒ 2c = –13 + 7 = –6
⇒ c = `(-6)/(2)` = –3
∴ c = –3, d = 7
Now matrix A = `[(2, 5),(-3, 7)]`.
APPEARS IN
संबंधित प्रश्न
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
Given `[(2, 1),(-3,4)]` . X = `[(7),(6)]`. Write:
- the order of the matrix X.
- the matrix X.
Evaluate the following :
`|(-2 , 3),(-1 , 4)| |(6 , 4),(3 ,- 1)|`
Given A = `[(p , 0),(0, 2)], "B" = [(0 , -q), (1, 0)], "C" = [(2, -2),(2, 2)]` and BA = C2.
Find the values of p and q.
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
If `"A" = [(a , b),(c , d)] and "I" = [(1 , 0),(0 , 1)]` show that A2 - (a + d) A = (bc - ad) I.
Find the values of x, y, a and b if `[(x - 2, y),(a + 2b, 3a - b)] = [(3, 1),(5, 1)]`
If A = `[(3, 3),(p, q)]` and A2 = 0 find p and q
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B