Advertisements
Advertisements
Question
If B = `[(-4, 2),(5, -1)] and "C" = [(17, -1),(47, -13)]` find the matrix A such that AB = C
Solution
B = `[(-4, 2),(5, -1)]`
C = `[(17, -1),(47, -13)]`
and AB = C
Let A = `[(a, b),(c, d)]`
Then AB = `[(a, b),(c, d)] xx [(-4, 2),(5, -1)]`
= `[(-4a + 5b, 2a - b),(-4c + 5d, 2c - d)]`
∵ AB = C
∴ `[(-4a + 5b, 2a - b),(-4c + 5d, 2c - d)] = [(17, -1),(47, 13)]`
Comparing corresponding elements, we get
∵ –4a + 5b = 17 ....(i)
2a – b = –1 ....(ii)
–4c + 5d = 47 ....(iii)
2c –d = –13 ....(iv)
Multiplying (i) by 1 and (ii) by 2
⇒ –4a + 5b = 17
4a – 2b = –2
Adding
3b = 15
⇒ b = `(15)/(3)` = 5
2a – b = –1
⇒ 2a – 5 = –1
⇒ 2a = –1 + 5 = 4
⇒ a = `(4)/(2) + 2`
∴ a = 2, b = 5
Again multiplying (iii) by 1 and (iv) by 2,
–4c + 5d = 47
4c – 2d = –26
Adding
3d = 21
⇒ d = `(21)/(3)` = 7
and
2c – d = –13
⇒ 2c – 7 = –13
⇒ 2c = –13 + 7 = –6
⇒ c = `(-6)/(2)` = –3
∴ c = –3, d = 7
Now matrix A = `[(2, 5),(-3, 7)]`.
APPEARS IN
RELATED QUESTIONS
If A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]` and I is the identity matric of the same order and At is the transpose of matrix A, find At.B + BI.
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
If A = `[(3, x),(0, 1)]` and B = `[(9, 16),(0, -y)]`, find x and y when A2 = B.
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
Find the value of p and q if:
`[(2p + 1 , q^2 - 2),(6 , 0)] = [(p + 3, 3q - 4),(5q - q^2, 0)]`.
Find x, y if `[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`.
Find x and y, if
`[(-3, 2),(0, -5)] [(x),(2)] = [(-5), (y)]`
Given that A = `[(3, 0),(0, 4)]` and B = `[(a, b),(0, c)]` and that AB = A + B, find the values of a, b and c.
Find the value of x if `[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`
If A = `[(3/5, 2/5),(x, y)]` and A2 = I, find x,y