Advertisements
Advertisements
Question
Find the value of x if `[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`
Solution
`[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`
Comparing the corresponding terms, we get.
-y = 2
⇒ y = -2
3x + y = 1
⇒ 3x = 1 – y
⇒ 3x = 1 – (–2)
= 1 + 2
= 3
⇒ x = `(3)/(3)`
= 1
Hence x = 1, y = –2.
APPEARS IN
RELATED QUESTIONS
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
Given `[["4 " " 2" ],[" -1 "" 1 " ]]` M = 6I , where M is a matrix and I is unit matrix of order 2×2.
(i) State the order of matrix M.
(ii) Find the matrix M.
If A = [4 7] and B = [3 l], find : 2A - 3B
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
If A = `[(1,3), (3,4)]` B = `[(-2,1), (-3,2)]` and `A^2 - 5B^2 = 5C` Find the matrix C where C is a 2 by 2 matrix.
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`
Choose the correct answer from the given four options :
If `[(x + 2y, -y),(3x, 7)] = [(-4, 3),(6, 4)]` then the values of x and y are
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : A2