Advertisements
Advertisements
Question
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`
Solution
Comparing the corresponding terms, we get.
3x + 4y = 2 ……(i)
x – 2y = 4 …….(ii)
Multiplying (i) by 1 and (ii) by 2
3x + 4y = 2,
2x – 4y = 8
Adding we get,
5x = 10
⇒ x = 2
Substituting the value of x in (i)
3 x 2 + 4y = 2,
6 + 4y = 2,
4y = 2 – 6
= –4
y = –1
∴ x = 2, y = –1
a + b = 5 ...(iii)
2a – b = –5. ...(iv)
APPEARS IN
RELATED QUESTIONS
Find the value of and 'y' if:
`2[(x,y),(9 , (y - 5))] + [(6,4),(-7,5)] = [(10,7),(22,15)]`
if `A = [(3,x),(0,1)], B = [(9,16),(0,-y)]`, Find x and y where `A^2 = B`
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
Let `A = [(1, 0),(2, 1)], B = [(2, 3),(-1, 0)]`. Find `A^2 + AB + B^2`
Given `[["4 " " 2" ],[" -1 "" 1 " ]]` M = 6I , where M is a matrix and I is unit matrix of order 2×2.
(i) State the order of matrix M.
(ii) Find the matrix M.
If A = [4 7] and B = [3 1] , find: A+2B
Find the value of p and q if:
`[(2p + 1 , q^2 - 2),(6 , 0)] = [(p + 3, 3q - 4),(5q - q^2, 0)]`.
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B