Advertisements
Advertisements
Question
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
Solution
A - B = `[(3 , 1),(2 , 1)] - [(1 , -2),(5 , 3)]`
= `[(3 - 1, 1 + 2),(2 - 5 , 1 - 3)] = [(2 , 3),(-3 , -2)]`
(A - B)2 = (A - B)(A - B)
⇒ (A - B)2 = `[(2 , 3),(-3 , -2)][(2 , 3),(-3 , -2)]`
= `[(4 - 9 , 6 - 6),(-6 + 6 , -9 + 4)]`
= `[(-5 , 0),(0 , -5)]`
and A2 = `[(3 , 1),(2 , 1)][(3 , 1),(2 , 1)]`
= `[(9 + 2 , 3 + 1),(6 + 2 , 2 + 1)] = [(11 , 4),(8 , 3)]`
and B2 = `[(1 , -2),(5 , 3)][(1 , -2),(5 , 3)]`
= `[(1 - 10 , -2 -6),(5 + 15 , -10 + 9)]`
= `[(-9 , -8),(20 , -1)]`
and AB = `[(3 , 1),(2 , 1)][(1 , -2),(5 , 3)]`
= `[(3 + 5 , -6 + 3),(2 + 5 , -4 + 3)] = [(8 , -3),(7 , -1)]`
Now A2 - 2AB + B2
= `[(11 , 4),(8 , 3)] -2 [(8 , -3),(7 , -1)] + [(-9 , -8),(20 , -1)]`
= `[(11 , 4),(8 , 3)] - [(16 , -6),(14 , -2)] + [(-9 , -8),(20 , -1)]`
= `[(11 - 6 - 9 , 4 + 6 - 8),(8 - 14 + 20 , 3 + 2 - 1)]`
= `[(-14 , 2),(14 , 4)]`
Hence, from above calculations, we get
(A - B)2 ≠ A2 - 2AB + B2.
APPEARS IN
RELATED QUESTIONS
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
Given A = `[(3, -2),(-1, 4)]`, B = `[(6),(1)]`, C = `[(-4),(5)]` and D = `[(2),(2)].` Find : AB + 2C – 4D
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
If A = `[(2, 1, -1),(0, 1, -2)]`, Find At . A where At is the transpose of matrix A.
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
If A = [4 7] and B = [3 l], find : 2A - 3B
If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q
If P = (8 , 5),(7 , 2) , find Pt
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to