Advertisements
Advertisements
Question
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
Solution
A – 2I = `[(4, 2),(1, 1)] - 2[(1, 0),(0, 1)]`
= `[(4, 2),(1,1)] - [(2, 0),(0, 2)]`
= `[(2, 2),(1, -1)]`
A – 3I = `[(4, 2),(1,1)] - 3[(1, 0),(0, 1)]`
= `[(4, 2),(1, 1)] - [(3, 0),(0, 3)]`
= `[(1, 2),(1, -2)]`
(A – 2I)(A – 3I) = `[(2, 2),(1, -1)][(1, 2),(1, -2)]`
= `[(2 + 2, 4 - 4),(1 - 1, 2 + 2)]`
= `[(4, 0),(0, 4)]`
APPEARS IN
RELATED QUESTIONS
If A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]` and I is the identity matric of the same order and At is the transpose of matrix A, find At.B + BI.
Given `[(2, 1),(-3, 4)] X = [(7), (6)]` write the order of matrix x
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
Let A = `[(4, -2),(6, -3)]`, B = `[(0, 2),(1, -1)]` and C = `[(-2, 3),(1, -1)]`. Find A2 – A + BC
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
If A =`|(1, 9 , 4),(5 , 0 , 3)|` , find negative A
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
If A = `[(3 , 1),(-1 , 2)]` and I = `[(1 , 0),(0, 1)]`
find A2 - 5A + 7 I.
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : A2