Advertisements
Advertisements
Question
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
Solution
Let the order of the matrix X be a × b
AX = B
`[(2, 1),(1, 3)]_(2 xx 2) xx X_(a xx b) = [(3),(-11)]_(2 xx 1)`
Clearly, the order of the matrix X is 2 × 1.
Let `X = [(x),(y)]`
`[(2, 1),(1, 3)] xx [(x),(y)] = [(3),(-11)]`
`[(2x + y),(x + 3y)] = [(3),(-11)]`
Comparing the two matrices, we get,
2x + y = 3 ...(1)
x + 3y = –11 ...(2)
Multiplying (1) with 3, we get,
6x + 3y = 9 ...(3)
Subtracting (2) from (3), we get,
5x = 20
x = 4
From (1), we have
y = 3 – 2x
= 3 – 8
= –5
∴ `X = [(4),(-5)]`
APPEARS IN
RELATED QUESTIONS
Given `[(2, 1),(-3,4)]` . X = `[(7),(6)]`. Write:
- the order of the matrix X.
- the matrix X.
Given A = `[(3, -2),(-1, 4)]`, B = `[(6),(1)]`, C = `[(-4),(5)]` and D = `[(2),(2)].` Find : AB + 2C – 4D
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
If `|(3"a" + 2"b" , 2"a" - "b"),(4"p" - 3"q" , 2"p" + "q")|` = `|(12 , 1),(16 , 8)|` , find the values of a , b , p and q.
Evaluate the following :
`|(2 , -5),(0 , -3)| |(1 , -1),(3 , 2)|`
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
If A = `[(3, 7),(2, 4)]`, B = `[(0, 2),(5, 3)]` and C = `[(1, -5),(-4, 6)]`. Find AB – 5C.
Let `"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`. Find A2 - A + BC
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]`,find values of x and y