Advertisements
Advertisements
प्रश्न
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
उत्तर
Let the order of the matrix X be a × b
AX = B
`[(2, 1),(1, 3)]_(2 xx 2) xx X_(a xx b) = [(3),(-11)]_(2 xx 1)`
Clearly, the order of the matrix X is 2 × 1.
Let `X = [(x),(y)]`
`[(2, 1),(1, 3)] xx [(x),(y)] = [(3),(-11)]`
`[(2x + y),(x + 3y)] = [(3),(-11)]`
Comparing the two matrices, we get,
2x + y = 3 ...(1)
x + 3y = –11 ...(2)
Multiplying (1) with 3, we get,
6x + 3y = 9 ...(3)
Subtracting (2) from (3), we get,
5x = 20
x = 4
From (1), we have
y = 3 – 2x
= 3 – 8
= –5
∴ `X = [(4),(-5)]`
APPEARS IN
संबंधित प्रश्न
Find the value of and 'y' if:
`2[(x,y),(9 , (y - 5))] + [(6,4),(-7,5)] = [(10,7),(22,15)]`
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
Solve for x and y:
`[(x + y, x - 4)][(-1, -2),(2, 2)] = [(-7, -11)]`
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find : 2A + 3B
If M = `|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10 , 1)|` find M+N
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Write the order of matrix X.
Given A = `[(p , 0),(0, 2)], "B" = [(0 , -q), (1, 0)], "C" = [(2, -2),(2, 2)]` and BA = C2.
Find the values of p and q.
Find x and y if
`[( x , 3x),(y , 4y)][(2),(1)] = [(5),(12)]`.
If A = `[(3 , 1),(-1 , 2)]` and I = `[(1 , 0),(0, 1)]`
find A2 - 5A + 7 I.
If A = `[(2, -1),(-4, 5)] and "B" = [(-3),(2)]` find the matrix C such that AC = B